
A Look at Modern C++
Dmitri Nesteruk, technical evangelist @ JetBrains

dmitrinesteruk@gmail.com

@dnesteruk

mailto:dmitrinesteruk@gmail.com

(Dead?) Languages

• Lisp (1958, Scheme, academic)

• FORTRAN (1957, astronomy)

• Smalltalk (1972)

• C (1972)

• Objective C (1983)

• C++ (1983)

• Java (1995)

• C# (2000)

• Swift (2014)

What is C++?

• A successor to C (an imperative language), which is (arguably) the most popular
language ever

• C with classes and a million other things
• C++ is backwards compatible with C

• Compiles to native code
• There is no virtual machine
• Resulting program ready to be executed without additional JIT compilation process

• Fast
• Low-level hardware access (raw memory, SIMD, ASM)

• Can be portable

• Some very mature libraries and tools
• We’re working on IDEs

• Rapidly evolving

Key fields

• Key industries
• Game Development
• Embedded Development
• Quant Finance

• Anyone who needs top performance
• Device drivers
• High Performance Computing (HPC)
• Interoperability with other languages possible

• C/C++ used to leverage custom hardware
• CUDA C
• Intel Xeon Phi
• OpenCL for FPGA

Problems

• Has no garbage collection mechanism
• Manual memory management
• Deterministic destruction

• Historically verbose
• But getting better

• Lack of metadata
• Lack of attributes/annotation, proper

reflection, etc.
• Run-Time Type Information (RTTI) a poor

substitute

• Has a preprocessor
• Possible source of bugs and ambiguities

• Unreadable compiler messages
• Reduces your chances to find out what’s

wrong and where

• Compilation is slow
• Cluster builds!

• Poor Unicode support

• Backward compatibility with C

• Allows write-only magic (e.g. template
metaprogramming)

• Testing is more difficult
• No metadata, remember?

• Third-party libraries often shipped as
source code

Compilers

• Lots of compiles out there

• Microsoft Visual C++ Compiler (MSVC), shipped with Visual Studio,
supports Windows, Microsoft-specific technologies (e.g., C++ AMP), .NET-
compliant C++ dialects

• Intel C++ Compiler
commercial, part of Intel Parallel Studio, includes a large number of
libraries and tools, integrates into Visual Studio, works on Win/Linux/OSX

• LLVM (Clang front-end)
modern, good diagnostic messages

• ... and many others

Build Systems

• Local build systems
• MAKE

• Cmake

• MSBuild

• Distributed build systems
• Distcc

• ElectricAccelerator

• IncrediBuild

Libraries

• C++ Standard Library
Standard Template Library (STL)

• Boost
Slowly migrating to C++ Standard Library

• Qt Framework
Cross-platform UI development
Separate IDE or Visual Studio integration

• Intel Libraries (also part of Intel Parallel Studio)
• Math Kernel Library (MKL)
• Threading Building Blocks (TBB) compatible with Microsoft PPL
• Integrated Performace Primitives (IPP)
• … and many more

Preprocessor

• Initial compilation stage

• Your chance to send hints and instructions to the compiler
• For example, to pick which parts of a file get compiled and which do not

• Preprocessing instructions start with #
• #include “foo.h” includes a file in the current file

• C# has similar functionality
• And good alternatives such as [Conditional]

• C++ functionality is much more powerful
• And much more dangerous

Compilation

• After processing, all #include statements are implemented
• In other words, each .cpp file has all its includes included

• But note before the includes’ includes directives

• And so on

• Each .cpp becomes one very big file
• Self-contained!

• This explains why compilation is
• Slow

• Can be parallelized at file level

Linking

• Linking joins all the object files together into an executable or library

• In addition to your own code, you (probably) want to link to other, external
libraries

• External libraries can be
• Static – the library is included wholesale in your program. There are no additional

files that need to be shipped
• Dynamic – the library exists as a separate file

• DLL on Windows, Shared Library on Linux
• If the library is not available, program will crash

• To link to a library you need
• Its header files (some libs are header-only, nothing else needed)
• Library files

Interop Options

• Windows options listed here

• Platform invocation services (P/Invoke)
• Export from C++, [DllImport] in C#/VB
• Functions only!

• Component Object Model (COM)
• Cross-language interoperability model
• Still used by Microsoft Office and major Windows applications
• Automation interface, dynamic keyword

• Managed C++, C++/CLI
• C++ variants that include .NET extensions
• Can be used to build a bridge between native and .NET worlds

That’s it!

• Questions?

